Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
2.
ACS Synth Biol ; 13(3): 942-950, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442491

RESUMO

Cell-free protein synthesis (CFPS) is a rapidly maturing in vitro gene expression platform that can be used to transcribe and translate nucleic acids at the point of need, enabling on-demand synthesis of peptide-based vaccines and biotherapeutics as well as the development of diagnostic tests for environmental contaminants and infectious agents. Unlike traditional cell-based systems, CFPS platforms do not require the maintenance of living cells and can be deployed with minimal equipment; therefore, they hold promise for applications in low-resource contexts, including spaceflight. Here, we evaluate the performance of the cell-free platform BioBits aboard the International Space Station by expressing RNA-based aptamers and fluorescent proteins that can serve as biological indicators. We validate two classes of biological sensors that detect either the small-molecule DFHBI or a specific RNA sequence. Upon detection of their respective analytes, both biological sensors produce fluorescent readouts that are visually confirmed using a hand-held fluorescence viewer and imaged for quantitative analysis. Our findings provide insights into the kinetics of cell-free transcription and translation in a microgravity environment and reveal that both biosensors perform robustly in space. Our findings lay the groundwork for portable, low-cost applications ranging from point-of-care health monitoring to on-demand detection of environmental hazards in low-resource communities both on Earth and beyond.


Assuntos
Técnicas Biossensoriais , Voo Espacial , Proteínas , Técnicas Biossensoriais/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Sistema Livre de Células
3.
ACS Synth Biol ; 13(4): 1290-1302, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38526141

RESUMO

The important roles that protein glycosylation plays in modulating the activities and efficacies of protein therapeutics have motivated the development of synthetic glycosylation systems in living bacteria and in vitro. A key challenge is the lack of glycosyltransferases that can efficiently and site-specifically glycosylate desired target proteins without the need to alter primary amino acid sequences at the acceptor site. Here, we report an efficient and systematic method to screen a library of glycosyltransferases capable of modifying comprehensive sets of acceptor peptide sequences in parallel. This approach is enabled by cell-free protein synthesis and mass spectrometry of self-assembled monolayers and is used to engineer a recently discovered prokaryotic N-glycosyltransferase (NGT). We screened 26 pools of site-saturated NGT libraries to identify relevant residues that determine polypeptide specificity and then characterized 122 NGT mutants, using 1052 unique peptides and 52,894 unique reaction conditions. We define a panel of 14 NGTs that can modify 93% of all sequences within the canonical X-1-N-X+1-S/T eukaryotic glycosylation sequences as well as another panel for many noncanonical sequences (with 10 of 17 non-S/T amino acids at the X+2 position). We then successfully applied our panel of NGTs to increase the efficiency of glycosylation for three protein therapeutics. Our work promises to significantly expand the substrates amenable to in vitro and bacterial glycoengineering.


Assuntos
Proteínas de Bactérias , Glicosiltransferases , Glicosilação , Glicosiltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Peptídeos/metabolismo , Bactérias/metabolismo
4.
ACS Synth Biol ; 13(4): 974-997, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38530077

RESUMO

The de novo construction of a living organism is a compelling vision. Despite the astonishing technologies developed to modify living cells, building a functioning cell "from scratch" has yet to be accomplished. The pursuit of this goal alone has─and will─yield scientific insights affecting fields as diverse as cell biology, biotechnology, medicine, and astrobiology. Multiple approaches have aimed to create biochemical systems manifesting common characteristics of life, such as compartmentalization, metabolism, and replication and the derived features, evolution, responsiveness to stimuli, and directed movement. Significant achievements in synthesizing each of these criteria have been made, individually and in limited combinations. Here, we review these efforts, distinguish different approaches, and highlight bottlenecks in the current research. We look ahead at what work remains to be accomplished and propose a "roadmap" with key milestones to achieve the vision of building cells from molecular parts.


Assuntos
Biotecnologia , Biologia Sintética
5.
Methods Mol Biol ; 2762: 309-328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315374

RESUMO

Cell-free protein synthesis (CFPS), whereby cell lysates are used to produce proteins from a genetic template, has matured as an attractive alternative to standard biomanufacturing modalities due to its high volumetric productivity contained within a distributable platform. Initially, cell-free lysates produced from Escherichia coli, which are both simple to produce and cost-effective for the production of a wide variety of proteins, were unable to produce glycosylated proteins as E. coli lacks native glycosylation machinery. With many important therapeutic proteins possessing asparagine-linked glycans that are critical for structure and function, this gap in CFPS production capabilities was addressed with the development of cell-free expression of glycoproteins (glycoCFE), which uses the supplementation of extracted lipid-linked oligosaccharides and purified oligosaccharyltransferases to enable glycoprotein production in the CFPS reaction environment. In this chapter, we highlight the basic methods for the preparation of reagents for glycoCFE and the protocol for expression and glycosylation of a model protein using a more productive, yet simplified, glycoCFE setup. Beyond this initial protocol, we also highlight how this protocol can be extended to a wide range of alternative glycan structures, oligosaccharyltransferases, and acceptor proteins as well as to a one-pot cell-free glycoprotein synthesis reaction.


Assuntos
Escherichia coli , Glicoproteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema Livre de Células/metabolismo , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo
6.
ACS Synth Biol ; 13(1): 129-140, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38150067

RESUMO

Cell-free gene expression (CFE) systems are powerful tools for transcribing and translating genes outside of a living cell. Synthesis of membrane proteins is of particular interest, but their yield in CFE is substantially lower than that for soluble proteins. In this paper, we study the CFE of membrane proteins and develop a quantitative kinetic model. We identify that ribosome stalling during the translation of membrane proteins is a strong predictor of membrane protein synthesis due to aggregation between the ribosome nascent chains. Synthesis can be improved by the addition of lipid membranes, which incorporate protein nascent chains and, therefore, kinetically compete with aggregation. We show that the balance between peptide-membrane association and peptide aggregation rates determines the yield of the synthesized membrane protein. We define a membrane protein expression score that can be used to rationalize the engineering of lipid composition and the N-terminal domain of a native and computationally designed membrane proteins produced through CFE.


Assuntos
Biossíntese de Proteínas , Dobramento de Proteína , Biossíntese de Proteínas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ribossomos/metabolismo , Peptídeos/metabolismo , Lipídeos
7.
Metab Eng ; 80: 241-253, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890611

RESUMO

Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering. Here, to address this gap, we create a set of engineered Escherichia coli and Saccharomyces cerevisiae strains rewired via CRISPR-dCas9 to achieve high-flux toward key metabolic precursors; namely, acetyl-CoA, shikimate, triose-phosphate, oxaloacetate, α-ketoglutarate, and glucose-6-phosphate. Cell-free extracts generated from these strains are used for targeted enzyme screening in vitro. As model systems, we assess in vivo and in vitro production of triacetic acid lactone from acetyl-CoA and muconic acid from the shikimate pathway. The need for these platforms is exemplified by the fact that muconic acid cannot be detected in wildtype extracts provided with the same biosynthetic enzymes. We also perform metabolomic comparison to understand biochemical differences between the cellular and cell-free muconic acid synthesis systems (E. coli and S. cerevisiae cells and cell extracts with and without metabolic rewiring). While any given pathway has different interfaces with metabolism, we anticipate that this set of pre-optimized, flux enhanced cell extracts will enable prototyping efforts for new biosynthetic pathways and the discovery of biochemical functions of enzymes.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Extratos Celulares , Escherichia coli/metabolismo
8.
ACS Synth Biol ; 12(10): 2909-2921, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37699423

RESUMO

As the field of synthetic biology expands, the need to grow and train science, technology, engineering, and math (STEM) practitioners is essential. However, the lack of access to hands-on demonstrations has led to inequalities of opportunity and practice. In addition, there is a gap in providing content that enables students to make their own bioengineered systems. To address these challenges, we develop four shelf-stable cell-free biosensing educational modules that work by simply adding water and DNA to freeze-dried crude extracts of non-pathogenic Escherichia coli. We introduce activities and supporting curricula to teach the structure and function of the lac operon, dose-responsive behavior, considerations for biosensor outputs, and a "build-your-own" activity for monitoring environmental contaminants in water. We piloted these modules with K-12 teachers and 130 high-school students in their classrooms─and at home─without professional laboratory equipment. This work promises to catalyze access to interactive synthetic biology education opportunities.


Assuntos
Biologia Sintética , Qualidade da Água , Humanos , Biologia Sintética/educação
9.
ACS Synth Biol ; 12(8): 2252-2261, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37553068

RESUMO

Allergens are used in the clinical diagnosis (e.g., skin tests) and treatment (e.g., immunotherapy) of allergic diseases. With growing interest in molecular allergy diagnostics and precision therapies, new tools are needed for producing allergen-based reagents. As a step to address this need, we demonstrate a cell-free protein synthesis approach for allergen production of a clinically relevant allergen panel composed of common allergens spanning a wide range of phylogenetic kingdoms. We show that allergens produced with this approach can be recognized by allergen-specific immunoglobulin E (IgE), either monoclonals or in patient sera. We also show that a cell-free expressed allergen can activate human cells such as peripheral blood basophils and CD34+ progenitor-derived mast cells in an IgE-dependent manner. We anticipate that this cell-free platform for allergen production will enable diagnostic and therapeutic technologies, providing useful tools and treatments for both the allergist and allergic patient.


Assuntos
Alérgenos , Imunoglobulina E , Humanos , Filogenia
10.
Biotechnol Adv ; 68: 108234, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37558188

RESUMO

Vaccines remain one of the most important pillars in preventative medicine, providing protection against a wide array of diseases by inducing humoral and/or cellular immunity. Of the many possible candidate antigens for subunit vaccine development, carbohydrates are particularly appealing because of their ubiquitous presence on the surface of all living cells, viruses, and parasites as well as their known interactions with both innate and adaptive immune cells. Indeed, several licensed vaccines leverage bacterial cell-surface carbohydrates as antigens for inducing antigen-specific plasma cells secreting protective antibodies and the development of memory T and B cells. Carbohydrates have also garnered attention in other aspects of vaccine development, for example, as adjuvants that enhance the immune response by either activating innate immune responses or targeting specific immune cells. Additionally, carbohydrates can function as immunomodulators that dampen undesired humoral immune responses to entire protein antigens or specific, conserved regions on antigenic proteins. In this review, we highlight how the interplay between carbohydrates and the adaptive and innate arms of the immune response is guiding the development of glycans as vaccine components that act as antigens, adjuvants, and immunomodulators. We also discuss how advances in the field of synthetic glycobiology are enabling the design, engineering, and production of this new generation of carbohydrate-containing vaccine formulations with the potential to prevent infectious diseases, malignancies, and complex immune disorders.


Assuntos
Vacinas , Antígenos , Imunidade Celular , Imunidade Inata , Polissacarídeos , Adjuvantes Imunológicos
11.
Nat Commun ; 14(1): 3897, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400446

RESUMO

Antibody discovery is bottlenecked by the individual expression and evaluation of antigen-specific hits. Here, we address this bottleneck by developing a workflow combining cell-free DNA template generation, cell-free protein synthesis, and binding measurements of antibody fragments in a process that takes hours rather than weeks. We apply this workflow to evaluate 135 previously published antibodies targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including all 8 antibodies previously granted emergency use authorization for coronavirus disease 2019 (COVID-19), and demonstrate identification of the most potent antibodies. We also evaluate 119 anti-SARS-CoV-2 antibodies from a mouse immunized with the SARS-CoV-2 spike protein and identify neutralizing antibody candidates, including the antibody SC2-3, which binds the SARS-CoV-2 spike protein of all tested variants of concern. We expect that our cell-free workflow will accelerate the discovery and characterization of antibodies for future pandemics and for research, diagnostic, and therapeutic applications more broadly.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Anticorpos Neutralizantes , Anticorpos Antivirais
12.
Nat Protoc ; 18(7): 2374-2398, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328605

RESUMO

The advent of distributed biomanufacturing platforms promises to increase agility in biologic production and expand access by reducing reliance on refrigerated supply chains. However, such platforms are not capable of robustly producing glycoproteins, which represent the majority of biologics approved or in development. To address this limitation, we developed cell-free technologies that enable rapid, modular production of glycoprotein therapeutics and vaccines from freeze-dried Escherichia coli cell lysates. Here, we describe a protocol for generation of cell-free lysates and freeze-dried reactions for on-demand synthesis of desired glycoproteins. The protocol includes construction and culture of the bacterial chassis strain, cell-free lysate production, assembly of freeze-dried reactions, cell-free glycoprotein synthesis, and glycoprotein characterization, all of which can be completed in one week or less. We anticipate that cell-free technologies, along with this comprehensive user manual, will help accelerate development and distribution of glycoprotein therapeutics and vaccines.


Assuntos
Escherichia coli , Vacinas , Escherichia coli/genética , Glicoproteínas , Vacinas/uso terapêutico , Biossíntese de Proteínas , Bactérias
13.
ACS Chem Biol ; 18(6): 1324-1334, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37257197

RESUMO

Non-canonical amino acids (ncAAs) can be incorporated into peptides and proteins to create new properties and functions. Site-specific ncAA incorporation is typically enabled by orthogonal translation systems comprising a stop codon suppressing tRNA (typically UAG), an aminoacyl-tRNA synthetase, and an ncAA of interest. Unfortunately, methods to discover and characterize suppressor tRNAs are limited because of laborious and time-consuming workflows in living cells. In this work, we develop anEscherichia coli crude extract-based cell-free gene expression system to rapidly express and characterize functional suppressor tRNAs. Our approach co-expresses orthogonal tRNAs using endogenous machinery alongside a stop-codon containing superfolder green fluorescent protein (sfGFP) reporter, which can be used as a simple read-out for suppression. As a model, we evaluate the UAG and UAA suppressing activity of several orthogonal tRNAs. Then, we demonstrate that co-transcription of two mutually orthogonal tRNAs can direct the incorporation of two unique ncAAs within a single modified sfGFP. Finally, we show that the cell-free workflow can be used to discover putative UAG-suppressor tRNAs found in metagenomic data, which are nonspecifically recognized by endogenous aminoacyl-tRNA synthetases. We anticipate that our cell-free system will accelerate the development of orthogonal translation systems for synthetic biology.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência , Códon de Terminação/genética , RNA de Transferência/química , Aminoácidos/química , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Fluorescência Verde/genética , Expressão Gênica
14.
ACS Synth Biol ; 12(4): 1264-1274, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37040463

RESUMO

Glycan-binding receptors known as lectins represent a class of potential therapeutic targets. Yet, the therapeutic potential of targeting lectins remains largely untapped due in part to limitations in tools for building glycan-based drugs. One group of desirable structures is proteins with noncanonical glycans. Cell-free protein synthesis systems have matured as a promising approach for making glycoproteins that may overcome current limitations and enable new glycoprotein medicines. Yet, this approach has not been applied to the construction of proteins with noncanonical glycans. To address this limitation, we develop a cell-free glycoprotein synthesis platform for building noncanonical glycans and, specifically, clickable azido-sialoglycoproteins (called GlycoCAP). The GlycoCAP platform uses an Escherichia coli-based cell-free protein synthesis system for the site-specific installation of noncanonical glycans onto proteins with a high degree of homogeneity and efficiency. As a model, we construct four noncanonical glycans onto a dust mite allergen (Der p 2): α2,3 C5-azido-sialyllactose, α2,3 C9-azido-sialyllactose, α2,6 C5-azido-sialyllactose, and α2,6 C9-azido-sialyllactose. Through a series of optimizations, we achieve more than 60% sialylation efficiency with a noncanonical azido-sialic acid. We then show that the azide click handle can be conjugated with a model fluorophore using both strain-promoted and copper-catalyzed click chemistry. We anticipate that GlycoCAP will facilitate the development and discovery of glycan-based drugs by granting access to a wider variety of possible noncanonical glycan structures and also provide an approach for functionalizing glycoproteins by click chemistry conjugation.


Assuntos
Glicoproteínas , Sialoglicoproteínas , Glicosilação , Lectinas/metabolismo , Polissacarídeos/metabolismo , Sialoglicoproteínas/metabolismo , Sistema Livre de Células
15.
ACS Synth Biol ; 12(4): 1216-1226, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36940255

RESUMO

In resource-limited settings, it can be difficult to safely deliver sensitive biologic medicines to patients due to cold chain and infrastructure constraints. Point-of-care drug manufacturing could circumvent these challenges since medicines could be produced locally and used on-demand. Toward this vision, we combine cell-free protein synthesis (CFPS) and a 2-in-1 affinity purification and enzymatic cleavage scheme to develop a platform for point-of-care drug manufacturing. As a model, we use this platform to synthesize a panel of peptide hormones, an important class of medications that can be used to treat a wide variety of diseases including diabetes, osteoporosis, and growth disorders. With this approach, temperature-stable lyophilized CFPS reaction components can be rehydrated with DNA encoding a SUMOylated peptide hormone of interest when needed. Strep-Tactin affinity purification and on-bead SUMO protease cleavage yield peptide hormones in their native form that are recognized by ELISA antibodies and that can bind their respective receptors. With further development to ensure proper biologic activity and patient safety, we envision that this platform could be used to manufacture valuable peptide hormone drugs in a decentralized way.


Assuntos
Hormônios Peptídicos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Biossíntese de Proteínas
16.
Front Mol Biosci ; 10: 1085887, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936989

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is the primary etiologic agent of traveler's diarrhea and a major cause of diarrheal disease and death worldwide, especially in infants and young children. Despite significant efforts over the past several decades, an affordable vaccine that appreciably decreases mortality and morbidity associated with ETEC infection among children under the age of 5 years remains an unmet aspirational goal. Here, we describe robust, cost-effective biosynthetic routes that leverage glycoengineered strains of non-pathogenic E. coli or their cell-free extracts for producing conjugate vaccine candidates against two of the most prevalent O serogroups of ETEC, O148 and O78. Specifically, we demonstrate site-specific installation of O-antigen polysaccharides (O-PS) corresponding to these serogroups onto licensed carrier proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. The resulting conjugates stimulate strong O-PS-specific humoral responses in mice and elicit IgG antibodies that possess bactericidal activity against the cognate pathogens. We also show that one of the prototype conjugates decorated with serogroup O148 O-PS reduces ETEC colonization in mice, providing evidence of vaccine-induced mucosal protection. We anticipate that our bacterial cell-based and cell-free platforms will enable creation of multivalent formulations with the potential for broad ETEC serogroup protection and increased access through low-cost biomanufacturing.

17.
Glycobiology ; 33(5): 358-363, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-36882003

RESUMO

Lectins are important biological tools for binding glycans, but recombinant protein expression poses challenges for some lectin classes, limiting the pace of discovery and characterization. To discover and engineer lectins with new functions, workflows amenable to rapid expression and subsequent characterization are needed. Here, we present bacterial cell-free expression as a means for efficient, small-scale expression of multivalent, disulfide bond-rich, rhamnose-binding lectins. Furthermore, we demonstrate that the cell-free expressed lectins can be directly coupled with bio-layer interferometry analysis, either in solution or immobilized on the sensor, to measure interaction with carbohydrate ligands without purification. This workflow enables the determination of lectin substrate specificity and estimation of binding affinity. Overall, we believe that this method will enable high-throughput expression, screening, and characterization of new and engineered multivalent lectins for applications in synthetic glycobiology.


Assuntos
Lectinas , Ramnose , Lectinas/química , Carboidratos/química , Proteínas Recombinantes/genética , Interferometria/métodos
18.
Metab Eng ; 76: 133-145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724840

RESUMO

Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.


Assuntos
1-Butanol , Butanóis , Butanóis/metabolismo , Etanol/metabolismo , Modelos Biológicos , Cinética
19.
Biotechnol Bioprocess Eng ; : 1-17, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778039

RESUMO

A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.

20.
Nat Commun ; 14(1): 961, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810740

RESUMO

Functional design of ribosomes with mutant ribosomal RNA (rRNA) can expand opportunities for understanding molecular translation, building cells from the bottom-up, and engineering ribosomes with altered capabilities. However, such efforts are hampered by cell viability constraints, an enormous combinatorial sequence space, and limitations on large-scale, 3D design of RNA structures and functions. To address these challenges, we develop an integrated community science and experimental screening approach for rational design of ribosomes. This approach couples Eterna, an online video game that crowdsources RNA sequence design to community scientists in the form of puzzles, with in vitro ribosome synthesis, assembly, and translation in multiple design-build-test-learn cycles. We apply our framework to discover mutant rRNA sequences that improve protein synthesis in vitro and cell growth in vivo, relative to wild type ribosomes, under diverse environmental conditions. This work provides insights into rRNA sequence-function relationships and has implications for synthetic biology.


Assuntos
RNA Ribossômico , Ribossomos , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Biologia Sintética , Fenótipo , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...